
Software Fault Prediction Analysis under BPSO Dimension Reduction
Conditions

Liu Hongqing
Hunan Vocational College of Modern Logistics, Changsha, Hunan, 410131, China

Email:158140027@qq.com

Keywords: bound particle swarm optimization; software fault; deep neural network; dimensionality
reduction; bound state

Abstract: The identification of module fault tendency is very important to reduce cost and improve
the effectiveness of software development process. The software fault tendency module deep neural
networks (DNN) prediction based on the bound particle swarm optimization (BPSO) dimensionality
reduction is put forward. Firstly, the calculation framework of the BPSO dimensionality
reduction-based software fault tendency module DNN prediction algorithm and the measure
indexes of 21 software faults used are given, and the normalized preprocessing method of its index
values is also given; secondly, the dimensionality reduction is performed on the software fault
dataset by bound particle swarm optimization, and the participle position is represented by a binary
(0 or 1) character string to simplify the data processing. Then the prediction of software fault
tendency module is realized by the deep neural network algorithm; finally, the performance
advantages of the algorithm are verified by simulation experiments on the four standard test sets of
PC1, JM1, KC1 and KC3.

1. Overview
Currently, software plays a significant role in all fields, so the software testing is thus recognized

as a basic mission for software development [1,2]. Researches show that most faults are prone to
occur in several software modules, so what we need to pay attention to is just these modules which
are always affected by faults. Compared with traditional algorithm, the algorithm in this article has
several creative points, they are :(1)the dimension reduction algorithm based on the Binary Particle
Swarm Optimization is introduced to handle with the data of software faults. It can improve the data
execution efficiency and is less influenced by testing process;(2)in order to improve the dimension
reduction, a kind of Bound-State Particle Swarm Optimization Algorithm is proposed to replace the
traditional particle swarm optimization algorithms. It uses the wave function to replace the position
and speed the primal particle swarm optimization algorithm to improve the dimension reduction.

2. Dimension Reduction Based on BPSO
2.1 Particle Swarm Optimization Algorithm

Current Optimal
Value

Regional Optimal
Value

Controllability

Whole Space

Region

Figure 1 Diagram of the Process of Particle`s Searching for Optimal Solution
In the Particle Swarm Optimization Algorithm, each particle can adjust the position in the search

space from time to time based on the flight experience of itself and neighbor nodes. It initializes the

2019 2nd International Conference on Computer Science and Advanced Materials (CSAM 2019)

Copyright © (2019) Francis Academic Press, UK DOI: 10.25236/csam.2019.078378

population at random and searches for an optimal solution that satisfies some certain performance.
The potential solution is called particle which flies through a multidimensional search space. It
is shown in Figure 1.

Each particle i has a position vector representing its position iX . The speed of each particle is

represented by a vector of iV . The formula forms of particle velocity and position are given:

1 1 ,

2 2

()
() (() ())
((

·
) ())

1i

i i best i

global i

V t
wV t c r P t X t

c r P t X t

+ =
+ −

+ − (1)

() () (1 1)i i iX t X t V t+ = + + (2)

In these formulas, t represents the current number of iterations, w represents the inertia weight,
1c as well as 2c are positive constants and 1r and 2r are random numbers uniformly distributed

within the interval of []0,1 . And ,i bestP and globalP are the best position for the current visiting
particle i and the best value of all particle position values, among which:

1 2

1 2

() (() () ())
(

, , ,
) (() () ()), , ,

i i i id

i i i id

X t X t X t X t
V t V t V t V t

=

 =
 

 (3)

In the formula (1), w , 1c and 2c are predefined. When the number of iterations is t, the cost
value of particle i is as follow:

() () () () ()()2

1 1

1 ˆ()
q d

k k
i j

j
i j i

k
C X t Xt tX

q = =

= −∑∑
(4)

In this formula, for the particle i ,
() ()k
ijX t represents the jth output component of the kth

sample, and
() ()ˆ k
ijX t represents the jth actual output component of the kth observed sample. In the

formula (5), it is better to make the value of ()C ⋅ as small as possible. As for the issue of
minimization, the smaller the objective function value is, the greater the cost value is. The best

position ,i bestP of particle i can be updated with the following formula:

() ()
() ()

,

,

, ,

()

(), () ()

(), () ()

1i best

i i i best

i best i i best

P t

X t X t P t

P t X t P

if C C

if C tC

=

 <

+




≥ (5)

When the particle finds a position which is better than the previous best position, it will be stored
in memorizer. The algorithm will continue to work until a satisfactory solution is found or the
maximum number of iterations is met.

2.2 Bound-State Particle Swarm Optimization Algorithm
In the model of Particle Swarm Optimization Algorithm, the state of a particle is described by a

wave function of (),x tψ which replaces position and velocity. The dynamic behavior of particle
swarms is very different from that of traditional particle swarm optimization algorithms. In this case,
the probability density function of particle X depends on the potential field of the particle. The

379

particles move according to the following iterative formula:

()

()

,

,

11 ln

, 0.5
11

() () ()

() () l() n

, 0.5

i i i best i
i

i i i best i
i

X t p t m X t
u t

if s

X t p t m X t
u t

if s

α

α

+ = + −





⋅

≥

+




= − − ⋅

< (6)
In this formula, the parameter α , which represents the parameter of expansion and shrinkage, is

uniform. And iu and s are uniform random numbers within the interval of []0,1 . And there are
also two formulas:

,() () ()· 1((·()))i i i best i globalp t t P t t P tϕ φ= + − (7)

, ,
1

1 ()
Q

i best i best
i

m P t
Q =

= ∑
 (8)

In these formulas, iϕ is a uniformly distributed random number in the interval []0,1 , Q

represents the number of all particles and ,i bestm is defined as the average value of the best
positions of all particles in the population. The termination rule of the Particle Swarm Optimization

Algorithm is that if the absolute difference between ()1C t + and ()C t is less than δ which is
training threshold for 10 consecutive times, then the algorithm should be stopped; otherwise, it

should be stopped until the maximum number of iterations maxG can be satisfied. The flow of the
BPSO algorithm is as follows:

Algorithm 1: BPSO Algorithm

Initialize the positions of all particles and the position of ,i bestP

 Do

 The formula (9) is used to calculate the ,i bestm
of particle i. 1,2, ,i Q=  ;

 Select the appropriate value of α

For particle 1:i Q=

 The cost value of particle i can be calculated based on the formula (5);

 The ,i bestP
 can be updated based on the formula (6)

 The globalP
can be updated with the following steps

 If ,(()) (())1i best globalC P t C P t< −
then

, () ()global i bestP t P t=
;

 Else
, () ()1global i bestP t P t= −

;
 Endif
Endfor
do For dimension 1: d do

()0,1randϕ =
;

()0,1u rand=
;

If ()0,1 0.5rand ≥
 do

 The particle position can be updated based on the upper formula of the formula set (7)
 Else
 The particle position can be updated based on the lower formula of the formula set (7)
Endfor
Until the termination conditions are satisfied

380

3. Prediction Method of Tendency of Software Fault
For the prediction performance of the two types of problems, the data in the confusion matrix is

usually used for evaluation. It is shown in Table 1.
Table 1 Confusion Matrix

Actual Type Predicted Type
0class = 1class =

0class = 00f 01f

1class = 10f 11f

In Table 2, the actual type of i is predicted to be the number of the type of j by ijf . In the table,
the predicted performance indexes are selected as follows: quantitative evaluation of the sensitivity
and specificity of the prediction method. These indexes can be calculated based on the confusion
matrix, and the calculation forms are:

11

11 10
Sensitivity

ff
f f

=
+ (9)

00

00 01
Specificity

ff
f f

=
+ (10)

In these formulas, the sensitivity is also called the fault detection rate. It is defined as the ratio
between the total number of types which are correctly predicted to be prone to be affected by faults
and the total number of types which are actually prone to be affected by faults. Specificity is also
called correctness. It is defined as the ratio between the total number of types which are correctly
predicted to be not prone to be affected by faults and the total number of types which are actually
not prone to be affected by faults.

4. Conclusion
This article studies the fault prediction method of application-development software of the

hybrid deep neural network and BPSO algorithm. The proposed prediction method can recognize
the fault tendency correctly.

References
[1] Liu Jihua; Wang Fengjin; Kong Jie; DNN prediction module based on BPSO dimensionality
reduction; computer engineering and design; 2008
[2] Pan Jiansheng; Cheng Shi; Wen Wanzhi; Distance-based software fault analysis method [J];
Wireless interconnection technology; Phase 12, 2017
[3] Fan Zhenyu; Software Fault Measurement Method [J]; Equipment Manufacturing Technology;
Issue 08, 2011
[4] Michelle; Ben Kerong; Demand Defect Analysis Based on Behavior Tree and Software Fault
Tree [J]; Computer and Digital Engineering; Issue 08, 2010

381

