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Abstract: The identification of module fault tendency is very important to reduce cost and improve 
the effectiveness of software development process. The software fault tendency module deep neural 
networks (DNN) prediction based on the bound particle swarm optimization (BPSO) dimensionality 
reduction is put forward. Firstly, the calculation framework of the BPSO dimensionality 
reduction-based software fault tendency module DNN prediction algorithm and the measure 
indexes of 21 software faults used are given, and the normalized preprocessing method of its index 
values is also given; secondly, the dimensionality reduction is performed on the  software fault 
dataset by bound particle swarm optimization, and the participle position is represented by a binary 
(0 or 1) character string to simplify the data processing. Then the prediction of software fault 
tendency module is realized by the deep neural network algorithm; finally, the performance 
advantages of the algorithm are verified by simulation experiments on the four standard test sets of 
PC1, JM1, KC1 and KC3. 

1. Overview
Currently, software plays a significant role in all fields, so the software testing is thus recognized

as a basic mission for software development [1,2]. Researches show that most faults are prone to 
occur in several software modules, so what we need to pay attention to is just these modules which 
are always affected by faults. Compared with traditional algorithm, the algorithm in this article has 
several creative points, they are :(1)the dimension reduction algorithm based on the Binary Particle 
Swarm Optimization is introduced to handle with the data of software faults. It can improve the data 
execution efficiency and is less influenced by testing process;(2)in order to improve the dimension 
reduction, a kind of Bound-State Particle Swarm Optimization Algorithm is proposed to replace the 
traditional particle swarm optimization algorithms. It uses the wave function to replace the position 
and speed the primal particle swarm optimization algorithm to improve the dimension reduction. 

2. Dimension Reduction Based on BPSO
2.1 Particle Swarm Optimization Algorithm
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Figure 1 Diagram of the Process of Particle`s Searching for Optimal Solution 
In the Particle Swarm Optimization Algorithm, each particle can adjust the position in the search 

space from time to time based on the flight experience of itself and neighbor nodes. It initializes the 
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population at random and searches for an optimal solution that satisfies some certain performance. 
The potential solution is called particle which flies through a multidimensional search space. It 
is shown in Figure 1. 

Each particle i has a position vector representing its position iX . The speed of each particle is

represented by a vector of iV . The formula forms of particle velocity and position are given:
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In these formulas, t represents the current number of iterations, w represents the inertia weight, 
1c  as well as 2c  are positive constants and 1r  and 2r  are random numbers uniformly distributed

within the interval of [ ]0,1 . And ,i bestP  and globalP  are the best position for the current visiting
particle i and the best value of all particle position values, among which: 
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In the formula (1), w , 1c  and 2c  are predefined. When the number of iterations is t, the cost
value of particle i is as follow: 
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In this formula, for the particle i , 
( ) ( )k
ijX t  represents the jth output component of the kth

sample, and 
( ) ( )ˆ k
ijX t  represents the jth actual output component of the kth observed sample. In the

formula (5), it is better to make the value of ( )C ⋅  as small as possible. As for the issue of
minimization, the smaller the objective function value is, the greater the cost value is. The best 

position ,i bestP  of particle i can be updated with the following formula:
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When the particle finds a position which is better than the previous best position, it will be stored 
in memorizer. The algorithm will continue to work until a satisfactory solution is found or the 
maximum number of iterations is met. 

2.2 Bound-State Particle Swarm Optimization Algorithm 
In the model of Particle Swarm Optimization Algorithm, the state of a particle is described by a 

wave function of ( ),x tψ  which replaces position and velocity. The dynamic behavior of particle
swarms is very different from that of traditional particle swarm optimization algorithms. In this case, 
the probability density function of particle X depends on the potential field of the particle. The 
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particles move according to the following iterative formula: 
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In this formula, the parameter α , which represents the parameter of expansion and shrinkage, is 

uniform. And iu  and s  are uniform random numbers within the interval of [ ]0,1 . And there are
also two formulas: 
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In these formulas, iϕ  is a uniformly distributed random number in the interval [ ]0,1 , Q

represents the number of all particles and ,i bestm is defined as the average value of the best 
positions of all particles in the population. The termination rule of the Particle Swarm Optimization 

Algorithm is that if the absolute difference between ( )1C t +  and ( )C t  is less than δ  which is
training threshold for 10 consecutive times, then the algorithm should be stopped; otherwise, it 

should be stopped until the maximum number of iterations maxG  can be satisfied. The flow of the
BPSO algorithm is as follows: 

Algorithm 1: BPSO Algorithm 

Initialize the positions of all particles and the position of ,i bestP

   Do 

   The formula (9) is used to calculate the ,i bestm
of particle i. 1,2, ,i Q=  ;

  Select the appropriate value of α  

For particle 1:i Q=

   The cost value of particle i can be calculated based on the formula (5); 

   The ,i bestP
 can be updated based on the formula (6)

   The globalP
can be updated with the following steps 

      If ,( ( )) ( ( ))1i best globalC P t C P t< −
then 

, ( ) ( )global i bestP t P t=
;

      Else 
, ( ) ( )1global i bestP t P t= −

; 
      Endif 
Endfor 
do For dimension 1: d  do 

( )0,1randϕ =
;

( )0,1u rand=
;

If ( )0,1 0.5rand ≥
 do

       The particle position can be updated based on the upper formula of the formula set (7) 
    Else 
       The particle position can be updated based on the lower formula of the formula set (7) 
Endfor 
Until the termination conditions are satisfied 
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3. Prediction Method of Tendency of Software Fault
For the prediction performance of the two types of problems, the data in the confusion matrix is 

usually used for evaluation. It is shown in Table 1. 
Table 1 Confusion Matrix 

Actual Type Predicted Type 
0class = 1class =  

0class = 00f 01f

1class =  10f 11f

In Table 2, the actual type of i is predicted to be the number of the type of j by ijf . In the table,
the predicted performance indexes are selected as follows: quantitative evaluation of the sensitivity 
and specificity of the prediction method. These indexes can be calculated based on the confusion 
matrix, and the calculation forms are: 
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In these formulas, the sensitivity is also called the fault detection rate. It is defined as the ratio 
between the total number of types which are correctly predicted to be prone to be affected by faults 
and the total number of types which are actually prone to be affected by faults. Specificity is also 
called correctness. It is defined as the ratio between the total number of types which are correctly 
predicted to be not prone to be affected by faults and the total number of types which are actually 
not prone to be affected by faults. 

4. Conclusion
This article studies the fault prediction method of application-development software of the

hybrid deep neural network and BPSO algorithm. The proposed prediction method can recognize 
the fault tendency correctly.  
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